Chemistry of Dimetallaboranes Derived from the Reaction of $[Cp*MCl_2]_2$ with Monoboranes (M = Ru, Rh; $Cp* = \eta^5 - C_5Me_5$)

Xinjian Lei, Maoyu Shang, and Thomas P. Fehlner*

Contribution from the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670

Received August 17, 1998

Abstract: In a single step, from $[Cp^*RuCl_2]_2$ ($Cp^* = \eta^5 - C_5Me_5$) and $Li[BH_4]$, *nido*-1,2-(Cp^*Ru)₂(μ -H)₂B₃H₇, **1**, is produced in high yield. Addition of BH₃·THF to **1** results in conversion to *nido*-1,2-(Cp^*Ru)₂(μ -H)B₄H₉, **2**. Reaction of BH₃·THF directly with $[Cp^*RuCl_2]_2$ yields a mixture of **1** and **2**. In two steps, a rhodium analogue, *nido*-2,3-(Cp^*Rh)₂B₃H₇, **9**, is accessible by the reaction of $[Cp^*RhCl_2]_2$ and $Li[BH_4]$ to exclusively produce (Cp^*Rh)₂B₂H₆, **8**, which adds BH₃·THF to give **9** as the major product in a mixture. Reaction of BH₃·THF directly with $[Cp^*RhCl_2]_2$ yields the chloro derivative of **9**, *nido*-1-Cl-2,3-(Cp^*Rh)₂B₃H₆, **11**, in high yield via the intermediate positional isomer, *nido*-3-Cl-1,2-(Cp^*Rh)₂B₃H₆, **10**. With high concentrations of Co₂(CO)₈, **1** reacts with Co₂(CO)₈ to give *nido*-1-(Cp^*Ru)-2-(Cp^*Ru)₂CO)(μ_3 -CO)B₃H₆, **3**, whereas low concentrations permit competitive degradation of **1** to yield *arachno*-(Cp^*Ru)(CO)(μ -H)B₃H₇, **4**. On the other hand, reaction of **11** with Co₂(CO)₈ gives *closo*-1-Cl-6-{Co(CO)₂}-2,3-(Cp^*Rh)₂(μ_3 -CO)B₃H₃, **12**. Mild thermolysis of **3** results in loss of hydrogen and the formation of *closo*-6-Co(CO)₂-2,3-(Cp^*Ru)₂(μ -CO)(μ_3 -CO)B₃H₄, **5**, whereas thermolysis of **2** results in loss of hydrogen and formation of *pileo*-2,3-(Cp^*Ru)₂B₄H₈, **6**, with a BH-capped square pyramidal structure. Finally, **6** reacts with Fe₂(CO)₉ to yield *pileo*-6-Fe(CO)₃-2,3-(Cp^*Ru)₂(μ_3 -CO)B₄H₄, **7**, with a BH-capped octahedral cluster structure. The overall isolated yield of **7**, formed in four steps from $[Cp^*RuCl_2]_2$, is \approx 50% and evidences good control of reactivity.

Introduction

Metallaborane chemistry echoes organometallic chemistry in that borane and transition metal fragments are mutually stabilized through their bonding interactions.¹ Just as with the hydrocarbon and transition metal fragments of an organometallic compound,² the mutual perturbation of electronic structure and properties promotes (or inhibits) reactions of the borane fragment and, likewise, the metal fragment. At the level of electroncounting rules,^{3,4} the principles governing geometric structure of metallaboranes are verified in numerous examples⁵⁻⁹ and our level of understanding approaches that of structural organometallic chemistry. The same cannot be said for synthetic metallaborane chemistry in that the proven methods for the formation of compounds containing metal-boron bonds are more limited than those for metal-carbon bonds.7,10 Hence, much of the richness metal variability adds to organometallic chemistry is still lacking in metallaborane chemistry.

Previous synthetic approaches have emphasized the reactions of polyboranes, often anionic, with metal fragment precursors,

(3) Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1.

(4) Mingos, D. M. P.; Wales, D. J. Introduction to Cluster Chemistry; Prentice Hall: New York, 1990.

- (5) Kennedy, J. D. Prog. Inorg. Chem. 1984, 32, 519.
- (6) Kennedy, J. D. Prog. Inorg. Chem. 1986, 34, 211.
- (7) Housecroft, C. E. Boranes and Metalloboranes; Ellis Horwood: Chichester, U.K., 1990.
 - (8) Housecroft, C. E. Adv. Organomet. Chem. 1991, 33, 1.
- (9) Housecroft, C. E. Cluster Molecules of the p-Block Elements; Oxford University Press: Oxford, U.K., 1994.

(10) Woollins, J. D. Non-Metal Rings, Cages and Clusters; Wiley: New York, 1988.

and these have been particularly successful for monometallic compounds.^{11–17} There are two deficiencies in this approach: activated polyboranes are required and polymetallic species are difficult to make selectively. The former requires the synthesis or acquisition of the appropriate polyborane, and the low yields and time-consuming separations associated with the latter stymie the development of derivative chemistry. Both inhibit consideration of potential applications.

In recent years we have been exploring the reactions of monocyclopentadienylmetal chloride dimers with commercially available monoboranes as a general route to dimetallaboranes. Full descriptions of the Co,¹⁸ Cr,¹⁹ and Mo²⁰ systems have been reported to date. The metal dimer serves as a scaffold upon which a polyborane fragment assembles under mild conditions. Under kinetic control, the monoborane activates the metal dimer by removing Cl (as Cl⁻ for [BH₄]⁻ or, with the exception of Cr, BH₂Cl for BH₃•THF) and high yields of single compounds are observed. Thus, in a single step both M–B and B–B bonds are formed with high selectivity. Others have used monoboranes

(11) Greenwood, N. N.; Ward, I. M. Chem. Soc. Rev. 1974, 3, 231.
(12) Wegner, P. A. In Boron Hydride Chemistry; Muetterties, E. L., Ed.;
Academic Press: New York, 1975; p 431.

- (13) Shore, S. G. Pure Appl. Chem. **1977**, 49, 717.
- (14) Grimes, R. N. Acc. Chem. Res. **1978**, 11, 420.
- (15) Gaines, D. F. In *Boron Chemistry*-4; Parry, R. W., Kodama, G.,
- Eds.; Pergamon: Oxford, U.K., 1980; p 73.
- (16) Housecroft, C. E.; Fehlner, T. P. Adv. Organomet. Chem. 1982, 21, 57.
- (17) Grimes, R. N. In *Metal Interactions with Boron Clusters*; Grimes, R. N., Ed.; Plenum: New York, 1982; p 269.
- (18) Nishihara, Y.; Deck, K. J.; Shang, M.; Fehlner, T. P.; Haggerty, B. S.; Rheingold, A. L. *Organometallics* **1994**, *13*, 4510.
- (19) Ho, J.; Deck, K. J.; Nishihara, Y.; Shang, M.; Fehlner, T. P. J. Am. Chem. Soc. **1995**, 117, 10292.
- (20) Aldridge, S.; Shang, M.; Fehlner, T. P. J. Am. Chem. Soc. 1998, 120, 2586.

⁽¹⁾ Inorganometallic Chemistry; Fehlner, T. P., Ed.; Plenum: New York, 1992.

⁽²⁾ Elschenbroich, C.; Salzer, A. Organometallics; VCH: New York, 1989.

to good effect in the formation of metallaboranes. Particularly noteworthy are the dimetallaboranes of Ta²¹ and Nb,²² the metallaborane analogues of mononuclear ethylene complexes,²³⁻²⁷ the formation of a chloroborohydride complex,²⁸ the chemistry of a triosmaborane,²⁹⁻³² and the metallaborane chemistry associated with certain Mo- and W-based organometallic compounds.^{27,33-35}

Herein we describe the application of our approach to dimetal ruthena- and rhodaboranes.³⁶ A large number of metallaboranes containing one or more group 8 M(CO)₃ fragments have been characterized,5-7,37but there are few crystallographically characterized examples containing simple group 8 CpM fragments, $Cp = \eta^5 - C_5 R_5^{24,33,38-41}$ Likewise, a number of mononuclear rhodaboranes are known,42,43 but dinuclear rhodaboranes are virtually unstudied.44

The present work was initiated with three questions in mind. The first concerned synthesis. Would a route based on the reactions of monoboranes with monocyclopentadienylmetal chorides provide useful syntheses of metallaboranes containing diruthenium and dirhodium fragments? The second involved structure. Fragments such as $M(CO)_3$ (M = Fe, Ru, Os, CpM; M = Co, Rh) which are three-orbital, two-electron species, readily participate in cluster bonding.^{14,45} As the CpRu fragment has one electron less than the CpRh fragment, what structural features would compensate in related dimetallaboranes containing the two metals? The third, and most important one, concerned reactivity. Given the characteristic compositional and structural features of the Rh and Ru metallaboranes, what similarities and differences in reactivity would result? Clear

- (22) Brunner, H.; Gehart, G.; Meier, W.; Wachter, J.; Wrackmeyer, B. J. Organomet. Chem. 1992, 436, 313.
 - (23) Medford, G.; Shore, S. G. J. Am. Chem. Soc. 1978, 100, 3953.
 - (24) Plotkin, J. S.; Shore, S. G. J. Organomet. Chem. 1979, 182, C15.
- (25) Coffy, T. J.; Medford, G.; Plotkin, J.; Long, G. J.; Huffman, J. C.; Shore, S. G. Organometallics 1989, 8, 2404.
- (26) Coffy, T. J.; Shore, S. G. J. Organomet. Chem. 1990, 394.
- (27) Grebenik, P. D.; Leach, J. B.; Green, M. L. H.; Walker, N. M. J. Organomet. Chem. 1988, 345, C31.
- (28) Kawano, Y.; Shimoi, M. Chem. Lett. 1998, 935.
- (29) Jan, D.-Y.; Hsu, L.-Y.; Workman, D. P.; Shore, S. G. Organometallics 1987, 6, 1984.
- (30) Krause, J. K.; Jan, D.-Y.; Shore, S. G. J. Am. Chem. Soc. 1987, 109, 4416.
- (31) Jan, D.-Y.; Workman, D. P.; Hsu, L.-Y.; Krause, J. A.; Shore, S. G. Inorg. Chem. 1992, 31, 5123.
- (32) Chung, J.-H.; Boyd, E. P.; Liu, J.; Shore, S. G. Inorg. Chem. 1997, 36, 4778.
- (33) Grebenik, P. D.; Green, M. L. H.; Kelland, M. A.; Leach, J. B.; Mountford, P.; Stringer, G.; Walker, N. M.; Wong, L.-L. J. Chem. Soc., Chem. Commun. 1988, 799.
- (34) Grebenik, P. D.; Green, M. L. H.; Kelland, M. A.; Leach, J. B.; Mountford, P. J. Chem. Soc., Chem. Commun. 1989, 1387.
- (35) Bullick, H. J.; Grenbenik, P. D.; Green, M. L. H.; Hughes, A. K.; Leach, J. B.; McGowan, P. C. J. Chem. Soc., Dalton Trans. 1995, 67.
- (36) Lei, X.; Shang, M.; Fehlner, T. P. J. Am. Chem. Soc. 1998, 120, 2686.
- (37) Housecroft, C. E. In Inorganometallic Chemistry; Fehlner, T. P., Ed.; Plenum Press: New York, 1992; p 73.
- (38) Grebenik, P. D.; Green, M. L. H.; Kelland, M. A.; Mountford, P.; Leach, J. B. New J. Chem. 1992, 16, 19.
- (39) Suzuki, H.; Takaya, Y.; Tada, K.; Kakigano, T.; Igarashi, M.; Tanaka, M. In Symposium on Organometallic Chemistry-Abstracts; Kinki Chemical Society: Tokyo, 1992; p 154. (40) Weiss, R.; Grimes, R. N. J. Am. Chem. Soc. **1977**, 99, 8087.

 - (41) Weiss, R.; Grimes, R. N. Inorg. Chem. 1979, 18, 3291.
- (42) Boocock, S. K.; Toft, M. A.; Inkrott, K. E.; Hsu, L.-Y.; Huffman, J. C.; Folting, K.; Shore, S. G. Inorg. Chem. 1984, 23, 3084.
- (43) Fontaine, X. L. R.; Fowkes, H.; Greenwood, N. N.; Kennedy, J. D.; Thornton-Pett, M. J. Chem. Soc., Dalton Trans. 1987, 2417.
- (44) Fontaine, X. L. R.; Greenwood, N. N.; Kennedy, J. D.; MacKinnon, P. I.; Thornton-Pett, M. Chem. Commun. 1986, 1111.
- (45) Fehlner, T. P. New J. Chem. 1988, 12, 307.

answers to these questions would serve to forge another connection between metallaborane chemistry and organometallic chemistry.

Experimental Section

Syntheses. (a) General Information. All operations were conducted under argon atmosphere using standard Schlenk techniques. Solvents were distilled before use under N₂ as follows: sodium benzophenone ketyl for hexane, diethyl ether, and tetrahydrofuran. BH3 THF (1.0 M in THF), LiBH₄(2.0 M in THF), [Cp*RhCl₂]₂, and Fe₂(CO)₉ were used as received from Aldrich. Likewise [Cp*RuCl₂]₂ and Co₂(CO)₈ (Strem) were used as received. Note that although Cp*RuCl2 is described as a polymer in the solid state, it is thought to exist as a dimer in solution.⁴⁶ Silica gel (60-200 mesh) was purchased from J. T. Baker Inc. and predried at 140 °C before use. Chromatography was carried out on 3 cm of silica gel in a 2.5 cm diameter column. NMR spectra were recorded on a 300 or 500 MHz Varian FT-NMR spectrometer. Residual protons of solvent were used as reference (δ , ppm, benzene, 7.15) while a sealed tube containing [(Me₄N)(B₃H₈)] in acetone- d_6 (δ_B , ppm, -29.7) was used as the external reference for the ¹¹B NMR. Infrared spectra were obtained on a Nicolet 205 FT-IR spectrometer. Mass spectra (m/ z) were obtained on a JEOL JMS-AX505HA mass spectrometer using the EI ionization mode or the FAB mode in a 3-nitrobenzyl alcohol matrix. Perfluorokersene was used as the standard for the high-resolution EI mass spectra. Elemental analysis was performed by M-H-W Laboratories, Phoenix, AZ,

(b) $nido-1,2-(Cp*Ru)_2(\mu-H)_2B_3H_7$, 1. In a typical reaction, [Cp*RuCl₂]₂ (0.40 g, 0.64 mmol) was placed in a 100 mL Schlenk tube with 30 mL of freshly distilled THF to generate a red suspension. The mixture was chilled to -40 °C, and LiBH₄ (1.6 mL, 3.2 mmol) was added slowly by syringe. The reaction mixture was allowed to warm slowly to room temperature. The red slurry became a red solution within 10 min, along with release of gas. After 1 h of stirring, the THF was removed under vacuum, and the resulting residue was extracted with hexane. Column chromatography was applied, and elution with hexane gave a yellow band from which 0.27 g of 1 was isolated (82% based on the Ru). MS(FAB): $P^+ = 516$, 3 B, 2 Ru atoms; calcd for weighted average of isotopomers lying within the instrument resolution, 516.1418; obsd, 516.1404. NMR: $^{11}\mathrm{B}$ (hexane, 22 °C), δ -0.5 (d, $J_{B-H} = 120$ Hz, {¹H}, s, 1B), -2.5 (dd, $J_{B-H} = 100, 60$ Hz, {¹H}, s, 2B); ¹H (C₆D₆, 22 °C), 3.28 (partially collapsed quartet, pcq, 1H, $B-H_t$), 2.66 (pcq, 2H, $B-H_t$), 1.93 (s, 15H, C_5Me_5), 1.79 (s, 15H, C₅Me₅), -4.05 (s, br, 2H, B-H-B), -11.25 (pcq, 2H, B-H-Ru), -13.55 (s, 2H, Ru-H-Ru). IR (hexane, cm⁻¹): 2498 m, 2450 m, 2426 w (B-Ht). Anal. Calcd for C20H39B3Ru2: C, 46.73; H, 7.65. Found: C, 46.65; H, 7.79.

(c) nido-1,2-(Cp*Ru)₂(µ-H)B₄H₉, 2. Two equivalents of BH₃·THF (0.38 mL, 0.38 mmol) was added to 1 (0.10 g, 0.19 mmol) in 10 mL of THF, and the solution was stirred at 60 °C for 10 h. Filtration and removal of the THF afforded 0.096 g of orange crystals of 2 (95% based on the Ru). MS(FAB): $P^+ = 528$, 4 B, 2 Ru atoms; calcd for weighted average of isotopomers lying within the instrument resolution, 528.1589; obsd, 528.1602. NMR: ¹¹B (hexane, 22 °C), δ 17.1 (dd, $J_{B-H} = 110$ Hz, 56 Hz,{¹H}, s), 3.9 (d, $J_{B-H} = 120$ Hz, {¹H}, s); ¹H (C₆D₆, 22 °C), 3.36 (pcq, 2H, B-H_t), 2.70 (pcq, 2H, B-H_t), 1.85 (s, 15H, C₅Me₅), 1.81 (s, 15H, C₅Me₅), -3.62 (s,br, 1H, B-H-B), -3.93 (s, br, 2H, B-H-B), -13.39 (br, 2H, B-H-Ru), -13.50 (s, 1H, Ru-H-Ru). IR (hexane, cm⁻¹): 2500 m, 2434 m. Anal. Calcd for C₂₀H₄₀B₄-Ru₂: C, 45.68; H, 7.67. Found: C, 45.84; H, 7.44.

(d) nido-1-(Cp*Ru)-2-(Cp*RuCO)-3-Co(CO)₂(µ₃-CO)B₃H₆, 3. 1 (0.13 g, 0.25 mmol) and Co2(CO)8 (0.13 g, 0.38 mmol) in 10 mL of hexane were stirred for 15 h at room temperature to give a greenish brown solution. A ¹¹B NMR spectrum of the resulting solution showed a major boron-containing product plus small amounts of other boroncontaning species. Column chromatography with hexane removed a dark brown band (Co₄(CO)₁₂) and a bright orange band ([Cp*Ru-(CO)₂]₂).⁴⁷ Elution with ether then afforded a greenish brown solution

⁽²¹⁾ Ting, C.; Messerle, L. J. Am. Chem. Soc. 1989, 111, 3449.

⁽⁴⁶⁾ Kölle, U.; Kossakowski, J. J. Organomet. Chem. 1989, 362, 383. (47) King, R. B.; Iqbal, M. Z.; King, A. D. J. Organomet. Chem. 1979, 171, 53.

which gave 0.10 g of **3** (61% based on Ru). MS(EI): P⁺ = 684, 3 B, 2 Ru atoms; fragment peaks corresponding to sequential loss of 4 CO; calcd for weighted average of isotopomers lying within the instrument resolution, 684.0312; obsd, 684.0339. NMR: ¹¹B (hexane, 22 °C), δ 65.9 (d, $J_{B-H} = 154$ Hz, {¹H}, s, 1B), 20.0 (dd, $J_{B-H} = 60$, 130 Hz, {¹H}, s, 1B), 2.0 (d, $J_{B-H} = 150$ Hz, {¹H}, s, 1B); ¹H (C₆D₆, 22 °C), δ 6.20 (pcq, 1H, B- H_{1}), 3.80 (pcq, 1H, B- H_{1}), 2.89 (pcq, 1H, B- H_{1}), 1.58 (s, 15H, C₅*Me*₅), 1.50 (s, 15H, C₅*Me*₅), 0.84 (br, 1H, B-H-M), -2.37 (br, 1H, B-H-B), -4.89 (br, 1H, B-H-M); ¹³C{¹H} (Tol- d_8 , 22 °C), δ 212.6 (CO), 102.9 (C₅Me₅), 102.9 (C₅Me₅), 9.6 (C₅*Me*₅), 9.5 (C₅*Me*₅). IR (KBr, cm⁻¹): 2511 w, 2443 w (B-H); 2010 vs, 1961 s, 1911 s, 1897 s, sh, 1679 s (CO). Anal. Calcd for C₂₄H₃₆O₄B₃CoRu₂: C, 42.26; H, 5.32. Found: C, 42.40; H, 5.67.

(e) arachno-(Cp*Ru)(CO)(µ-H)B₃H₇, 4.1 (0.10 g, 0.19 mmol) and Co₂(CO)₈ (0.06 g, 0.18 mmol) were placed in a 100 mL Schlenk tube. A 20 mL portion of freshly distilled hexane was added, and the reaction mixture was stirred for 10 h at room temperature. Column chromatography was performed. Elution with hexane (dark brown solution) followed by ether afforded 3. The dark brown solution was kept at -40 °C overnight. Black crystals (Co4(CO)12) formed and were removed by filtration. The solution was then concentrated and again kept at -40°C overnight. The procedure was repeated until the solution IR indicated the absence of $Co_4(CO)_{12}$. The resulting light brown solution was dried to give 0.015 g of 4 (26% based on Ru). MS(EI): $P^+ = 306, 3 B, 1$ Ru atoms; fragment peak corresponding to loss of 1 CO; calcd for weighted average of isotopomers lying within the instrument resolution, 306.1087; obsd, 306.1057. NMR: ¹¹B (hexane, 22 °C), δ 0.8 (d, t, $J_{\rm B-H} = 140, 40$ Hz, {¹H}, s, 1B), -2.8 (t, $J_{\rm B-H} = 120$ Hz,{¹H}, s, 1B), -11.7 (t, $J_{B-H} = 110$ Hz, {¹H}, s, 1B); ¹H (C₆D₆, 22 °C), δ 3.18 (pcq, 2H, B-Ht), 2.49 (overlaping pcq, 2H, B-Ht), 2.28 (overlaping pcq, 1H, B-H_t), 1.44 (s, 15H, C₅Me₅), -3.23 (br, 1H, B-H-M), -4.09 (br, 1H, B-H-B), -11.79 (br, 1H, B-H-M). IR (C₆D₆, cm⁻¹): 2521 w, 2482 w, 2435 w, 2422 w (B-H); 1990 vs (CO).

(f) *closo*-6-Co(CO)₂-2,3-(Cp*Ru)₂(μ -CO)(μ ₃-CO)B₃H₄, 5. 3 (0.05 g, 0.07 mmol) was dissolved in 10 mL of freshly distilled toluene. The resulting green brown solution was stirred for 30 min at 80 °C. Column chromatography with hexane gave an orange solution containing [Cp*Ru(CO)₂]₂. Elution with ether afforded a red-brown solution, which was dried to give 0.03 g of red microcrystals of **5** (66%). Note that longer heating time resulted in decomposition of **5** to [Cp*Ru(CO)₂]₂. MS (EI): P⁺ = 682, 3 B, 2 Ru atoms; fragment peaks corresponding to sequential loss of 4 CO; calcd for weighted average of isotopomers lying within the instrument resolution, 682.0192; obsd, 682.0133. NMR: ¹¹B (toluene, 22 °C), δ 82.4 (d, J_{B-H} = 130 Hz, {¹H}, s, 1B), 49.1 (d, J_{B-H} =132 Hz, {¹H}, s, 2B); ¹H (C₆D₆, 22 °C), δ 8.50 (pcq, 1H, B–H₁), 6.30 (pcq, 2H, B–H₁), 1.56 (s, 30H, C₅Me₅), -10.25 (br, 1H, Co–H). IR (C₆D₆, cm⁻¹): 2495 w, 2490 w (B–H); 2035 vs, 1991 s, 1825 s, 1755 s (CO).

(g) *pileo-2,3-*{**Cp*Ru**}₂(μ -**H**)**B**₄**H**₇, **6.** 2 (0.10 g, 0.19 mmol) was disolved in 5 mL of freshly distilled toluene, and the solution was stirred at 95 °C for 20 h. Filtration and removal of the toluene afforded 0.098 g of orange solid **6** (98%). MS(FAB): P⁺ = 526, 4 B, 2 Ru atoms; calcd for ¹²C₂₀¹H₃₈¹¹B₄¹⁰²Ru₂, 526.1433; obsd, 526.1432. NMR: ¹¹B (hexane, 22 °C), δ 122.5 (d, $J_{B-H} = 110$ Hz,{¹H}, s, 1B), 21.3 (d, $J_{B-H} = 120$ Hz, {¹H}, s, 2B), -32.8 (d, $J_{B-H} = 130$ Hz, {¹H}, s, 1B); ¹H (C₆D₆, 22 °C), 10.01 (pcq, 1H, B–H₁), 5.46 (pcq, 2H, B–H₁), 1.75 (s, 15H, C₅*Me*₅), -0.27 (s, br, 1H, B–H–B), -2.37 (q, $J_{B-H} = 130$ Hz, 1H, B– H_1), -12.37 (br, 2H, B–H–Ru), -15.08 (s, 1H, Ru–H–Ru). IR (hexane, cm⁻¹): 2492 w, 2528 m. Anal. Calcd for C₂₀H₃₈B₄-Ru₂: C, 45.85; H, 7.31. Found: C, 46.52; H, 7.25.

(h) *pileo*-6-{Fe(CO)₃}-2,3-{Cp*Ru}₂-(μ_3 -CO)B₄H₄, 7. 6 (0.10 g, 0.19 mmol) and an excess of Fe₂(CO)₉ were placed in a 100 mL Schlenk tube. A 10 mL portion of freshly distilled hexane was added to the mixture by syringe. The reaction mixture was stirred for 2 h at 60 °C. Filtration through Celite and column chromatography afforded a red solution, which was dried to give 0.09 g of red microcrystals of 7 (70% based on Ru). MS(EI): P⁺ = 690, 4 B, 2 Ru atoms; fragment peaks corresponding to sequential loss of 4 CO; calcd for weighted average of isotopomers lying within the instrument resolution, 690.0311; obsd, 690.0293. NMR: ¹¹B (hexane, 22 °C), δ 98.1 (d, $J_{B-H} = 160$ Hz, {¹H}, s, 1B), 79.0 (d, $J_{B-H} = 132$ Hz,{¹H}, s, 2B), 5.2 (d, $J_{B-H} = 125$ Hz,

{¹H}, s, 1B); ¹H (C₆D₆, 22 °C), δ 8.52 (pcq, 2H, B–*H*_i), 6.52 (pcq, 1H, B–*H*_i), 3.11 (pcq, 1H, B–*H*_i), 1.64 (s, 30H, C₅*Me*₅). IR (KBr, cm⁻¹): 2576 w, 2474 w, sh, 2454 w (B–H); 2006 vs, 1952 s, 1927 s, 1744 s (CO). IR (hexane, cm⁻¹): 2566 w, 2495 w (B–H); 2020 vs, 1971 s, 1955 s, 1731 s (CO). Anal. Calcd for C₂₄H₃₄O₄B₄FeRu₂: C, 41.91; H, 4.98. Found: C, 42.16; H, 5.13.

(i) (**Cp*Rh**)₂**B**₂**H**₆, **8**. [Cp*RhCl₂]₂ (0.11 g, 0.17 mmol) was placed in a 100 mL Schlenk tube, and 15 mL of freshly distilled THF was added to generate an orange suspension. The mixture was chilled to -40 °C, and LiBH₄ (0.43 mL, 0.86 mmol) was added slowly by syringe. The reaction mixture was allowed to warm slowly up to room temperature. The orange slurry became a red-brown solution within 10 min. After 1 h of stirring, the THF was removed under vacuum, and the resulting residue was extracted with hexane. The solution was dried to afford 0.07 g of dark brown **8** (82% based on Rh). MS(EI): P⁺ = 504, 2 B, 2 Rh atoms; calcd for ¹²C₂₀¹H₃₆¹¹B₂¹⁰³Rh₂, 504.1121; obsd, 504.1119. NMR: ¹¹B (hexane, 22 °C), δ –2.2 (d, J_{B-H} = 150 Hz, {¹H}, s); ¹H (C₆D₆, 22 °C), 9.20 (pcq, 2H, B–H_t), 1.92 (s, 30H, C₅Me₅), -15.64 (s, 4H, B–H–Rh).

(j) *nido*-2,3-{Cp*Rh}₂B₃H₇, **9.** To a solution of **8** (0.08 g, 0.16 mmol) was added 2 equiv of BH₃·THF (0.32 mL, 0.32 mmol) at -40 °C. After the mixture was stirred at room temperature for 1 h and then at 60 °C for 20 h, the solvent was removed under vacuum. Hexane extraction, filtration, and column chromatography at -40 °C afforded a dark red solution. Crystallization at -40 °C gave 0.03 g of dark red crystals of **9** (36%). MS(EI): P⁺ = 516, 3 B, 2 Rh atoms; calcd for ${}^{12}C_{20}{}^{11}H_{37}{}^{11}B_{3}{}^{103}Rh_2$, 516.1295; obsd, 516.1304. NMR: ¹¹B (hexane, 22 °C), δ 43.9 (d, J_{B-H} = 150 Hz, {¹H}, 1B), 14.9 (d, J_{B-H} = 130 Hz, {¹H}, s, 2B); ¹H (C₆D₆, 22 °C), δ 5.34 (pcq, 1H, B- H_1), 4.86 (pcq, 2H, B- H_1), 1.83 (s, 30H, C₅ Me_5), -2.04 (br, 1H, B- $H-B_1$), -12.09 (br, 2H, Rh- $H-B_1$), -16.58 (t, J_{Rh-H} =25 Hz, 1H, Rh-H-Rh). IR (hexane, cm⁻¹): 2497 m, 2455 w (B- H_1). Anal. Calcd for C₂₀H₃₇B₃-Rh₂: C, 46.58; H, 7.23. Found: C, 46.83; H, 7.40.

(k) *nido*-3-Cl-2,3-{ η^5 -C₅Me₅Rh}₂B₃H₆, 10. [Cp*RhCl₂]₂ (0.10 g, 0.16 mmol) was placed in a 100 mL Schlenk tube, and 10 mL of freshly distilled THF was added to generate an orange suspension. The mixture was chilled to -40 °C, and BH3 •THF (1.12 mL, 1.12 mmol) was added slowly by syringe. The reaction mixture was allowed to warm slowly to room temperature. The color of the mixture changed from orange to deep blue and then to red-orange. A homogeneous red-orange solution was observed after a period of 30 min. After the solution was stirred for another 2 h, THF was removed under vacuum, and the resulting residue was extracted with hexane. Low-temperature column chromatography (-20 °C) was applied. Elution with 5% ether in hexane gave a dark red solution, which was dried to afford 0.09 g of 10 (84% based on Rh). MS(EI): $P^+ = 550$, 3 B, 1 Cl, 2 Rh atoms; calcd for ¹²C₂₀¹H₃₆¹¹B₃¹⁰³Rh₂³⁵Cl, 550.0907; obsd, 550.0896. NMR: ¹¹B (hexane, 22 °C), δ 48.0 (s, {¹H}, 1B), 4.0 (d, $J_{B-H} = 150$ Hz, {¹H}, s, 1B), -5.3 (d, $J_{B-H} = 122$ Hz, {¹H}, s, 1B); ¹H (C₆D₆, 22 °C), δ 3.78 (pcq, 2H, B-H₁), 1.93 (s, 15H, C₅Me₅), 1.73 (s, 15H, C₅Me₅), -4.01 (br, 2H, B-H-B), -14.00 (br, 1H, Rh-H-B,), -14.83 (t, br, $J_{Rh-H} = 25$ Hz, 1H, Rh-H-Rh). IR (hexane, cm⁻¹): 2510 w (B-H_t).

(I) nido-1-Cl-2,3-{Cp*Rh}2B3H6, 11. [Cp*RhCl2]2 (0.18 g, 0.28 mmol) was loaded in a 100 mL Schlenk tube, and 20 mL of freshly distilled THF was added to generate an orange suspension. The mixture was chilled to -40 °C, and 1.96 mL (1.96 mmol) of BH3•THF in THF was added slowly by syringe. The reaction mixture was allowed to warm slowly to room temperature. The color of the mixture changed from orange to deep blue and then to red-orange. A homogeneous redorange solution was observed over a period of 30 min. The solution was then heated to ca. 65 °C and stirred for 6 h. THF was removed under vacuum, and the resulting residue was extracted with hexane. Column chromatography was applied, and elution with ether gave a red-orange solution, from which 0.14 g of 11 was isolated (91% based on Rh). MS(EI): $P^+ = 550$, 3 B, 1 Cl, 2 Rh atoms; calcd for ¹²C₂₀¹H₃₆¹¹B₃¹⁰³Rh₂³⁵Cl, 550.0907; obsd, 550.0896. NMR: ¹¹B (hexane, 22 °C), δ 45.5 (s, {¹H}, 1B), 11.5 (d, $J_{B-H} = 120$ Hz, {¹H}, s, 2B); ¹H $(C_6D_6, 22 \text{ °C}), \delta 4.62 \text{ (pcq, 2H, B}-H_t), 1.74 \text{ (s, 30H, } C_5Me_5), -2.48$ (br, 1H, B-H-B,), -11.63 (br, 2H, Rh-H-B), -15.57 (t, J_{Rh-H} = 25 Hz, 1H, Rh-H-Rh). IR (hexane, cm⁻¹): 2510 w (B-H_t). Anal. Calcd for C₂₀H₃₆B₃Rh₂Cl: C, 43.66; H, 6.60. Found: C, 44.92; H, 6.59.

Table 1. Crystallographic Data and Structure Refinement Details for Compounds 1, 2, 3, and 6

	1	2	3	6
empirical formula	$C_{20}H_{39}B_3Ru_2$	$C_{20}H_{40}B_4Ru_2$	C ₂₄ H ₃₆ B ₃ CoO ₄ Ru ₂	$C_{20}H_{38}B_4Ru_2$
formula weight	514.08	525.90	682.03	523.88
crystal system	monoclinic	tetragonal	monoclinic	triclinic
space group	C2/c	$I4_1/a$	Cc	$P\overline{1}$
a (Å)	11.372(2)	34.003(3)	8.532(3)	8.743(2)
b (Å)	14.061(3)	34.003(3)	38.001(4)	8.901(2)
<i>c</i> (Å)	15.233(3)	8.3206(11)	9.327(3)	16.019(3)
α (deg)	90	90	90	105.446(12)
β (deg)	103.12(3)	90	116.68(3)	103.633(14)
γ (deg)	90	90	90	90.769(13)
$V(Å^3)$	2372.1(8)	9621(2)	2702.1(13)	1163.9(3)
Ζ	4	16	4	2
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.439	1.452	1.677	1.495
F(000)	1048	4288	1368	532
wavelength (Mo Kα (Å))	0.710 73	0.710 73	0.710 73	0.710 73
$\mu (\mathrm{mm}^{-1})$	1.274	1.258	1.738	1.299
crystal size (mm)	$0.28 \times 0.22 \times 0.12$	$0.40 \times 0.23 \times 0.20$	$0.35 \times 0.25 \times 0.04$	$0.25 \times 0.22 \times 0.12$
θ range (deg)	2.34-24.98	2.40-24.97	2.14-25.00	2.38-24.98
no. of total reflns collected	2190	4372	4728	4385
no. of unique reflns	2085 [R(int) = 0.1007]	4211 [R(int) = 0.0134]	4728 [R(int) = 0.0000]	4095 [R(int) = 0.0127]
no of unique reflns $[I > 2\sigma(I)]$	1783	3643	4659	3735
linear decay correction	no	no	no	no
abs. correction	ψ scans	ψ scans	DIFABS	ψ scans
max and min transmission	1.0000 and 0.7844	1.0000 and 0.8977	1.0000 and 0.4043	1.0000 and 0.8003
refinement method	full-matrix on F^2	full-matrix on F^2	full-matrix on F^2	full-matrix on F^2
weighting scheme	σ weight	σ weight	σ weight	σ weight
data/restraints/parameters	2085/30/211	4195/16/270	4728/20/325	4093/12/267
goodness-of-fit on F^2	1.093	1.067	1.082	1.125
final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0657	R1 = 0.0278	R1 = 0.0644	R1 = 0.0321
	wR2 = 0.1804	wR2 = 0.0658	wR2 = 0.1759	wR2 = 0.0836
R indices (all data)	R1 = 0.0736	R1 = 0.0364	R1 = 0.0653	R1 = 0.0349
	wR2 = 0.1885	wR2 = 0.0879	wR2 = 0.1768	wR2 = 0.0864
largest diff peak and hole (e $Å^{-3}$)	1.215 and -1.073	0.353 and -0.526	0.939 and -1.005	1.105 and -0.591

(m) $closo-1-Cl-6-{Co(CO)_2}-2,3-(Cp*Rh)_2(\mu_3-CO)B_3H_3, 12. 11$ (0.08 g, 0.15 mmol) and Co2(CO)8 (0.08 g, 0.23 mmol) were placed in a 100 mL Schlenk tube. A 10 mL portion of freshly distilled hexane was slowly added to the mixture by syringe at -20 °C. The reaction mixture was allowed to warm to room temperature and stirred for 20 h. Insoluble black solids were removed by filtration through Celite, and column chromatography was performed at room temperature. Elution with hexane gave a brown solution (Co₄(CO)₁₂ by IR). Subsequent elution with ether afforded a red-orange solution, which was dried to yield 0.083 g of red-orange microcrystals of 12 (80% based on Rh). MS(EI): $P^+ = 690$, 3 B, 1 Cl, and 2 Rh atoms; fragment peaks corresponding to sequential loss of 3 CO; calcd for ¹²C₂₃¹H₃₃¹⁶O₃¹¹B₃⁵⁹Co¹⁰³Rh₂³⁵Cl, 689.9853; obsd, 689.9866. NMR: ¹¹B (hexane, 22 °C), δ 62.8 (s, {¹H}, s, 1B), 37.4 (d, $J_{B-H} = 150$ Hz, {¹H}, s, 2B); ¹H (C₆D₆, 22 °C), δ 5.50 (pcq, 2H, B-H_t), 1.67 (s, 30H, C₅Me₅), -7.07 (br, 1H, B-H-B). IR (hexane, cm⁻¹): 2513 w (B-H); 2028 s, 1986 m, 1724 w (CO).

(n) *closo*-1-Cl-6-{Fe(CO)₃}-2,3-(Cp*Rh}₂(μ_3 -CO)B₃H₂, 13. 11 (0.07 g, 0.13 mmol) and Fe₂(CO)₉ (0.07 g, 0.19 mmol) were placed in a 100 mL Schlenk tube. A 10 mL portion of freshly distilled hexane was slowly added to the mixture by syringe, and the reaction mixture was heated to 55 °C with stirring for 20 h. Insoluble black solids were removed by filtration through Celite, and chromatography on a silica gel plate gave 0.04 g of red microcrystals of 13 (43% based on Rh). MS(FAB): P⁺ = 714, 3 B, 1 Cl, and 2 Rh atoms; fragment peaks corresponding to sequential loss of 4 CO; calcd for ¹²C₂₄¹H₃₂¹⁶O₄¹¹B₃⁵⁶-Fe¹⁰³Rh₂³⁵Cl, 713.9728; obsd, 713.9745. NMR: ¹¹B (hexane, 22 °C), δ 75.5 (s, {¹H}, s, 1B), 64.9 (d, $J_{B-H} = 150$ Hz, {¹H}, s, 2B); ¹H (C₆D₆, 22 °C), δ 8.16 (pcq, 2H, B–H_i), 1.62 (s, 30H, C₅Me₅). IR (hexane, cm⁻¹): 2450 w, 2492 w (B–H); 2028 s, 1981 m, 1965 m, 1735 m (CO).

X-ray Structure Determinations. Crystallographic information for compounds 1–3, 6, 7, 9, 11, and 12 is given in Tables 1 and 2. Preliminary examination and data collection were performed with Mo K α radiation ($\lambda = 0.710$ 73 Å) on an Enraf-Nonius CAD4 computer controlled κ axis diffractometer equipped with a graphite crystal, incident beam monochromator at room temperature.⁴⁸ Structure solution and refinement (based on F^2) were performed on a PC by using the SHELXTL V5 package.⁴⁹ All reflections, including those with negative intensities, were included in the refinement.

(a) *nido*-1,2-(Cp*Ru)₂(μ -H)₂B₃H₇, **1**. An orange blocklike crystal of **1**, obtained by keeping a saturated hexane solution at 4 °C for several days, was mounted on a glass fiber. Most of the non-hydrogen atoms were located by the direct method, and the remaining non-hydrogen atoms were found in succeeding difference Fourier syntheses. It was found that the Cp* group was disordered over two sites with occupancy coefficients of 0.5. In addition, one of the boron atoms was disordered over two sites due to the crystallographic 2-fold axis. In the final refinement, hydrogen atoms for the two sets of disordered Cp* groups were refined with an idealized riding model, which restrained the C–H distance to 0.96 Å and the isotropic thermal parameter of a hydrogen atom to 1.5 times the equivalent isotropic thermal parameter of its bonded carbon atom. The positions for the rest of the hydrogen atoms were not located and not included in the final refinement.

(b) *nido*-1,2-(Cp^*Ru)₂(μ -H)B₄H₉, 2. A red-orange blocklike crystal, obtained by keeping a saturated hexane solution at 4 °C for several days, was mounted on a glass fiber in a random orientation. Most of the non-hydrogen atoms were located by the direct method, and the remaining non-hydrogen atoms were found in succeeding difference Fourier syntheses. In the final refinement, the Cp* hydrogen atoms were refined with an idealized riding model, which restrained the C–H distance to 0.96 Å and the isotropic thermal parameter of a hydrogen atom to 1.5 times the equivalent isotropic thermal parameter of its bonded carbon atom. After all non-hydrogen atoms were refined anisotropically and hydrogen atoms of Cp* groups refined isotropically, a difference Fourier synthesis located the rest of the hydrogen atoms, which were refined isotropically with bond length restraints.

(c) *nido*-1-(Cp*Ru)-2-(Cp*RuCO)-3-Co(CO)₂(μ_3 -CO)B₃H₆, 3. Black platelike crystals suitable for X-ray diffraction were obtained by keeping a saturated toluene solution at 4 °C for several days, and one was mounted on a glass fiber in a random orientation. Most of the non-hydrogen atoms were located by the direct method; the remaining non-hydrogen atoms were found in succeeding difference Fourier syntheses. In the final refinement, hydrogen atoms for the Cp* groups were refined

⁽⁴⁸⁾ Frenz, B. A. In *The Enraf-Nonius CAD4-A Real-time System for Concurrent X-ray Data Collection and Crystal Structure Determination*; Schenk, H., Olthof-Hazelkamp, R., von Konigsveld, H., Bassi, G. C., Eds.; Delft University Press: Delft, Holland, 1978; p 64.

⁽⁴⁹⁾ Sheldrick, G. M. *SHELXTL V5*; Siemens Industrial Automation Inc.: Madison, WI, 1994.

 Table 2.
 Crystallographic Data and Structure Refinement Details for Compounds 7, 9, 11, and 12

	7	9	11	12
empirical formula	C24H34B4FeO4Ru2	$C_{20}H_{37}B_3Rh_2$	$C_{20}H_{36}B_3ClRh_2$	C23H33B3ClCoO3Rh2
formula weight	687.74	515.75	550.19	690.12
crystal system	monoclinic	monoclinic	monoclinic	orthorhombic
space group	$P2_{1}/n$	$P2_{1}/c$	$P2_{1}/c$	$Pna2_1$
a (Å)	9.241(3)	15.2677(14)	15.574(4)	20.160(2)
b (Å)	15.112(3)	8.7342(11)	8.740(2)	9.113(2)
<i>c</i> (Å)	20.047(3)	17.324(2)	18.038(5)	14.544(2)
α (deg)	90	90	90	90
β (deg)	99.944(10)	103.572(9)	104.76(2)	90
γ (deg)	90	90	90	90
$V(Å^3)$	2757.5(11)	2245.7(4)	2374.2(10)	2672.1(6)
Ζ	4	4	4	4
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.657	1.525	1.539	1.715
F(000)	1376	1048	1112	1376
wavelength (Mo Kα (Å))	0.710 73	0.710 73	0.710 73	0.710 73
$\mu \text{ (mm}^{-1})$	1.628	1.470	1.505	1.957
crystal size (mm)	$0.42 \times 0.30 \times 0.25$	$0.35 \times 0.28 \times 0.17$	$0.29 \times 0.18 \times 0.01$	$0.18 \times 0.11 \times 0.06$
θ range (deg)	2.06-24.99	2.42 - 24.97	2.34-24.97	2.02 - 24.98
no. of total reflns collected	4969	3937	4338	4702
no. of unique reflns	4828 [R(int) = 0.0383]	3937	4172 [R(int) = 0.0340]	4702
no of unique reflns $[I > 2\sigma(I)]$	4406	3619	2922	4117
decay correction	linear decay (0.0)	linear decay (0.0)	linear decay (-2.6%/63.9 h)	linear decay (0.0)
abs correction	ψ scans	DIFABS	ψ scans	ψ scans
max and min transmission	1.000 and 0.9359	1.0000 and 0.6752	0.9983 and 0.8797	0.9998 and 0.8734
data/restraints/parameters	4825/24/420	3937/11/258	4170/10/263	4702/6/311
goodness-of-fit on F^2	1.108	1.105	1.110	1.138
final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0323	R1 = 0.0266	R1 = 0.0538	$R_1 = 0.0378$
	wR2 = 0.0866	wR2 = 0.0713	wR2 = 0.1191	wR2 = 0.0803
R indices (all data)	R1 = 0.0363	R1 = 0.0298	R1 = 0.0895	R1 = 0.0503
<u>^</u>	wR2 = 0.0912	wR2 = 0.0739	wR2 = 0.1482	wR2 = 0.0902
largest diff peak and hole (e $Å^{-3}$)	1.266 and -0.546	0.618 and -0.524	0.775 and -0.717	0.575 and -0.341

with an idealized riding model, which restrained the C–H distance to 0.96 Å and the isotropic thermal parameter of a hydrogen atom to 1.5 times the equivalent isotropic thermal parameter of its bonded carbon atom. After all non-hydrogen atoms were refined anisotropically and hydrogen atoms of Cp* groups refined isotropically, a difference Fourier synthesis located the rest of the hydrogen atoms, which were refined isotropically with bond length restraints.

(d) *pileo-2,3-*(Cp*Ru)₂(μ -H)B₄H₇, 6. Red-orange blocklike crystals suitable for X-ray diffraction were obtained by keeping a saturated hexane solution at 4 °C for several days, and one was mounted on a glass fiber in a random orientation. Most of the non-hydrogen atoms were located by the direct method; the remaining non-hydrogen atoms were found in succeeding difference Fourier syntheses. In the final refinement, hydrogen atoms for the Cp* groups were refined with an idealized riding model, which restrained the C–H distance to 0.96 Å and the isotropic thermal parameter of a hydrogen atom. After all non-hydrogen atoms were refined anisotropically and hydrogen atoms of Cp* groups refined isotropically, a difference Fourier synthesis located the rest of the hydrogen atoms, which were refined isotropically with bond length restraints.

(e) pileo-6-Fe(CO)₃-2,3-(Cp*Ru)₂(µ₃-CO)B₄H₄, 7. Red polyhedral crystals suitable for X-ray diffraction were obtained by keeping a saturated toluene solution at room temperature for 2 days, and one was mounted on a glass fiber in a random orientation. Most of the nonhydrogen atoms were located by the direct method; the remaining nonhydrogen atoms were found in succeeding difference Fourier syntheses. It was found that one of the Cp* groups was disordered over two sites with occupancy coefficients of 0.5. In the final refinement, hydrogen atoms for the Cp* groups were refined with an idealized riding model, which restrained the C-H distance to 0.96 Å and the isotropic thermal parameter of a hydrogen atom to 1.5 times the equivalent isotropic thermal parameter of its bonded carbon atom. After all non-hydrogen atoms were refined anisotropically and hydrogen atoms of Cp* groups refined isotropically, a difference Fourier synthesis located the rest of the hydrogen atoms, which were refined isotropically with bond length restraints.

(f) *nido*-2,3-(Cp*Rh)₂B₃H₇, 9. Dark red blocklike crystals suitable for X-ray diffraction were obtained by keeping a saturated ether solution at 4 °C for several days, and one was mounted on a glass fiber in a random orientation. Most of the non-hydrogen atoms were located by the direct method; the remaining non-hydrogen atoms were found in succeeding difference Fourier syntheses. After all non-hydrogen atoms were refined anisotropically, a difference Fourier synthesis located all hydrogen atoms. In the final refinement, Cp* hydrogen atoms were refined with an idealized riding model, which restrained the C–H distance to 0.93 Å and the isotropic thermal parameter of a hydrogen atom to 1.2 times the equivalent isotropic thermal parameter of its bonded carbon atom. The rest of the hydrogen atoms were refined isotropically with bond length restraints, which used four free variables in the refinement to confine B–H and Rh–H bond distances around their mean values.

(g) *nido*-1-Cl-2,3-(Cp*Rh)₂B₃H₆, 11. Red-orange crystals suitable for X-ray diffraction were obtained by keeping a saturated ether solution at -40 °C for 1 week, and one was mounted on a glass fiber in a random orientation. Most of the non-hydrogen atoms were located by the direct method, and the remaining non-hydrogen atoms were found in succeeding difference Fourier syntheses. After all non-hydrogen atoms were refined anisotropically, a difference Fourier synthesis located all hydrogen atoms. In the final refinement, cyclopentadienyl hydrogen atoms were refined with an idealized riding model, which restrained the C–H distance to 0.93 Å and the isotropic thermal parameter of a hydrogen atom to 1.2 times the equivalent isotropic thermal parameter of its bonded carbon atom. The rest of the hydrogen atoms were refined isotropically with bond length restraints, which used four free variables in the refinement to confine B–H and Rh–H bond distances around their mean values.

(h) *closo*-1-Cl-6-{Co(CO)₂}-2,3-(Cp*Rh)₂(μ_3 -CO)B₃H₃, 12. Redorange crystals suitable for X-ray diffraction were obtained by keeping a saturated ether solution at -40 °C for 1 week, and one was mounted on a glass fiber in a random orientation. Most of the non-hydrogen atoms were located by the direct method; the remaining non-hydrogen atoms were found in succeeding difference Fourier syntheses. After all non-hydrogen atoms were refined anisotropically, a difference

Figure 1. Molecular structure of $nido-1,2-(Cp*Ru)_2(\mu-H)_2B_3H_7$, 1. Selected bond lengths (Å) and angles (deg): Ru-Ru' 2.814(1), Ru-B2 2.014(17), Ru-B1 2.293(12), B1-Ru1' 2.246(10), B1-B2 1.82(2), B2-B1' 2.02(2), B2-Ru-B1' 56.3(6), B2-B1-Ru1' 104.7(8), B2-B1-Ru 57.3(7), Ru1'-B1-Ru 76.6(3), B1-B2-Ru 73.2(8), B1-B2-B1' 86.8(9), Ru-B2-B1' 67.7(7).

Fourier synthesis located all hydrogen atoms. In the final refinement, Cp* hydrogen atoms were refined with an idealized riding model, which restrained the C–H distance to 0.93 Å and the isotropic thermal parameter of a hydrogen atom to 1.2 times the equivalent isotropic thermal parameter of its bonded carbon atom. The rest of the hydrogen atoms were refined isotropically with bond length restraints, which used four free variables in the refinement to confine B–H and Rh–H bond distances around their mean values.

Results

Synthesis of nido-1,2-(Cp*Ru)₂(µ-H)₂B₃H₇, 1. The reaction of [Cp*RuCl₂]₂ with [BH₄]⁻ in THF gives a single metallaborane, and the spectroscopic data support its formulation as a 7 skeletal electron pair (sep)^{3,4,50} nido-dimetallapentaborane with the molecular formula (Cp*Ru)₂B₃H₉. Although the molecules are disordered in the solid state and the hydrogen atom positions are not defined by the structure determination, the square pyramidal core geometry expected on the basis of the electron count is confirmed and the compound is identified as the 1,2isomer (Figure 1). This core structure symmetry is consistent with the solution ¹¹B and ¹H NMR data. In addition, the ¹H NMR data reveal the presence of a pair of BHB protons, a pair of BHRu protons, and a pair of RuH protons. The first pair can only be placed on the two B-B edges of the square face, and the second logically occupies the remaining B-Ru edges of this face. This requires the third pair to be associated with the Ru centers, and we assign them as RuHRu bridging on the basis of a comparison of the chemical shift with that of the RuHRu proton of 2. A comparison of 1 with two structurally characterized examples of 1,2- dimetallapentaboranes formed from two electron metal fragments, i.e., 1,2-{Fe(CO)₃}₂B₃H₇⁵¹ and $1-Cp*Co-2-{Fe(CO)_3}B_3H_7$,⁵² shows that 1 is distinguished by the presence of two additional metal-hydride bridges.

Reaction of $[Cp*RuCl_2]_2$ with BH₃•THF in THF yields BH₂-Cl and a mixture containing 1 and 2 (see below). In contrast to the reaction with borohydride, no conditions gave pure 1. Indeed, above room temperature and in the presence of sufficient BH₃• THF, the reaction yields product 2 directly (Scheme 1). The explanation of the differing behavior of the two monoboranes is straightforward. In our experience, borohydride reacts with available chlorides to give a simple coordinated borohydride¹⁹ or a metallaborane containing the B₂H₆ ligand, e.g., $Cp*_2Mo_2$ - $Cl_2B_2H_6^{20}$ but does not lead to cluster expansion of metallabo-

ranes lacking halogen. Borane removes chlorides from metals as BH_2Cl^{18} and adds to yield metallaboranes, but these can then undergo cluster expansion with additional borane.⁵³ Thus, the low selectivity of borane relative to borohydride results from competitive reaction of **1** with borane to give **2**. Experimental confirmation of this point is given in the next section.

Although the first step of the reaction of monoboranes with the metal dimer is uncertain, we do know that reduction can compete with metallaborane formation.²⁰ Unfortunately, [Cp*Ru- Cl_2 is poorly soluble under the reaction conditions, making it difficult to characterize the initial reaction. Visual observation shows that the mixed valent dimer, [Cp*2Ru2Cl3], which is very soluble and highly colored, is not present in large quantities during the synthetic reaction. On the other hand, preparation of this species⁴⁶ in situ using [Et₃BH]⁻ followed by reaction with $[BH_4]^-$ shows only the formation of **1**. As $[Cp*RuCl]_4$ is also poorly soluble and, in any case, is not expected to give 1 upon treatment with [BH₄]⁻, we suggest that the reaction proceeds through the mixed-valent chloride dimer and a ruthenium borohydride as low concentration intermediates as shown in Scheme 1. Loss of hydrogen from the ruthenium borohydride with M-B and B-B bond formation leads to the first observed product 1. Addition of BH₃·THF to give 2 is facile (see below) whereas further reaction with Li[BH₄] is not.

Syntheses of $(Cp*Rh)_2B_2H_6$, 8, and *nido-2*,3- $(Cp*Rh)_2B_3H_7$, 9. Reaction of $[Cp*RhCl_2]_2$ with Li[BH₄] at room temperature produces a single metallaborane (Scheme 2). Although we were unable to obtain single crystals suitable for a structure determination, the spectroscopic data unambiguously show the compound to be $(Cp*Rh)_2B_2H_6$, 8, a rhodium dimer perpendicularly bridged by an ethane-like B₂H₆ ligand (Figure 2). That is, the high-resolution mass data establish the molecular formula, the ¹¹B NMR spectrum shows equivalent borons, and the proton NMR spectrum shows signals due to Cp* ligands, BH terminal protons, and RhHB bridging protons in the ratio of 15:1:2. There are now several known examples of species such as 8 which contain formal $[B_2H_6]^{2-}$ ligands in one of two tautomeric forms, and four have been crystallographically characterized.^{20–22,54}

⁽⁵⁰⁾ Wade, K. Electron Deficient Compounds; Nelson: London, 1971. (51) Andersen, E. L.; Haller, K. J.; Fehlner, T. P. J. Am. Chem. Soc. 1979, 101, 4390.

⁽⁵²⁾ Lei, X.; Shang, M.; Fehlner, T. P. Organometallics 1998, 17, 1558.

⁽⁵³⁾ Aldridge, S.; Hashimoto, H.; Kawamura, K.; Shang, M.; Fehlner, T. P. *Inorg. Chem.* **1998**, *37*, 928.

⁽⁵⁴⁾ Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. J. Am. Chem. Soc. 1996, 118, 4830.

Scheme 2

Figure 2. Proposed structure of (Cp*Rh)₂B₂H₆, 8.

Compound **8** reacts with BH₃·THF at elevated temperature to yield one major metallaborane product but in a mixture with significant amounts of two additional species. Isolated by fractional crystallization, the major product is 7-sep *nido*-2,3-(Cp*Rh)₂B₃H₇, **9** (Scheme 3). Both the spectroscopic data and solid-state structure (Figure 2) define the structure as a square pyramidal dimetallaborane, but in contrast to those of **1**, both metal atoms are found in basal positions. Thus, it constitutes a homometallic example analogous to 2-(Cp*Ir)-3-{(PPh₃)₂(CO)-Os}B₃H₇.⁵⁵ The route to **9** is not as selective as one would wish, and the chloro derivative **11**, isolated in better yield without painstaking separation (see below), provides a more convenient platform for the investigation of reaction chemistry.

Syntheses of *nido*-3-Cl-1,2-(Cp*Rh)₂B₃H₆, 10, and *nido*-1-Cl-2,3-(Cp*Rh)₂B₃H₆, 11. The reaction of $[Cp*RhCl_2]_2$ with BH₃•THF at 60 °C results in the formation of a single metallaborane which can be isolated in high yield. The new compound is identified as 7-sep *nido*-1-Cl-2,3-(Cp*Rh)₂B₃H₆, 11 (Schemes 2 and 3), on the basis of its spectroscopic properties and solid-state structure (Figure 3).³⁶ It is isostructural with **9** and differs only in the substitution of the terminal hydrogen on the apical boron atom with a chlorine atom (Figure 2). Cl substitution for H appears to be a minor structural perturbation.

At room temperature and relatively short reaction times, only small amounts of **11** are observed and the major product is a

different compound which is identified as 7-sep nido-3-Cl-1,2-(Cp*Rh)₂B₃H₆, **10** (Figure 4, Schemes 2 and 3), on the basis of a comparison of its spectroscopic data with those of 9 and 11. Curiously, one of the four cluster bridging hydrogens bridges the apical and basal Rh atoms rather than an edge of the open square face as found in B₅H₉ itself. However, the distinctly broadened line width of the triplet associated with this proton shows it to be associated with, if not bonded to, the adjacent boron atom. At 60 °C, pure 10 cleanly isomerizes to 11, and this reaction constitutes a rare example of a metallaborane cluster isomerization. Further, it demonstrates kinetic control of the reaction system and a greater thermodynamic stability for the 2,3-isomer relative to the 1,2-isomer. As we find no evidence for thermal rearrangement of 1, the difference in isomer stabilities is attributed to the accommodation of RuH vs Rh in a nido-M₂B₃ cluster.

Reaction of [Cp*RhCl₂]₂ with BH₃•THF in THF at room temperature results in a change in color from orange of the suspension to the characteristic blue of [Cp*RhCl]₂,⁵⁶ showing that reduction precedes metallaborane formation. The color change is accompanied by the formation of BH₂Cl and a gas, presumably H₂. On continued reaction, the blue color changes to red-orange, additional BH₂Cl is formed, and a metallaborane product is observed. No similar color change is observed for the reaction of [Cp*RhCl₂]₂ with Li[BH₄], probably because the steady-state concentration of [Cp*RhCl]₂ never reaches a high enough level for visual observation. The fact that no (Cp*RhCl)₂B₂H₆ or (Cp*Rh)₂(B₂H₆)₂, analogous to (Cp*Mo-Cl)₂B₂H₆ or (Cp*Mo)₂(B₂H₆)₂ formed in the reaction of $\{Cp*MoCl_2\}_2$ with 2 Li[BH₄] and 4 Li[BH₄], respectively,²⁰ is observed is also consistent with reduction followed by metallaborane formation as shown in Scheme 2.

The incorporation of Cl in the borane pathway suggests a competition between H₂ loss with concomitant BB bond formation in an intermediate chloroborohydride complex and exchange of the last Cl atom between free borane and the complex. Note that a mononuclear chlorohydride ruthenium complex was recently reported.²⁸ Also, chloroborohydride metal salts are known and have been structurally characterized.57 Exchange between a coordinated chloroborohydride and free borane could easily proceed via a pathway analogous to that found for the redistribution reaction of haloboranes with boranes.⁵⁸ For rhodium, but thus far for no other metal, hydrogen elimination to give the chlorine-substituted dirhodaborane intermediate (Cp*Rh)2B2H5Cl dominates the exhange of the chlorine with the chloroborohydride to give $(Cp*Rh)_2B_2H_6$, 8. The former leads to 10 and then 11, whereas the latter would give 9, which is not observed. Consistent with this hypothesis, spectroscopic evidence for small amounts of a dichloro analogue of 11 was observed.

Cluster Expansion of *nido*-1,2-(Cp*Ru)₂(μ -H)₂B₃H₇, **1**. The reaction of pure **1** with BH₃•THF results in a facile and quantitative conversion to a single compound. On the basis of spectroscopic data, this compound is an 8-sep *nido*-dimetalla-hexaborane and demonstrates that cluster expansion by the formal insertion of a BH fragment into **1** has taken place. A solid-state structure determination (Figure 5) shows that the new metallaborane is *nido*-1,2-(Cp*Ru)₂(μ -H)B₄H₉, **2**, in which the core geometry and the skeletal hydrogen atom positions are in accord with the solution NMR data.

⁽⁵⁵⁾ Bould, J.; Pasieka, M.; Braddock-Wilking, J.; Rath, N. P.; Barton, L.; Gloeckner, C. *Organometallics* **1995**, *14*, 5138.

⁽⁵⁶⁾ Sharp, P. R.; Hoard, D. W.; Barnes, C. L. J. Am. Chem. Soc. 1990, 112, 2024.

⁽⁵⁷⁾ Lawrence, S. H.; Shore, S. G.; Koetzle, T. F.; Huffman, J. C.; Wei, C.-Y.; Bau, R. *Inorg. Chem.* **1985**, *24*, 3171.

⁽⁵⁸⁾ Onak, T. Organoborane Chemistry; Academic Press: New York, 1975.

Figure 3. Molecular structure of *nido*-2,3-(Cp*Rh)₂B₃H₇, **9**. Note that **9** is isostructural with *nido*-1-Cl-2,3-(Cp*Rh)₂B₃H₆, **11**.³⁶ Selected bond lengths (Å) and angles (deg) for **9**: Rh1–Rh2 2.8491(4), Rh1–B1 2.112(4), Rh1–B2 2.188(4), Rh2–B1 2.114(4), Rh2–B3 2.198(4), B1–B2 1.741(6), B1–B3 1.756(6), B2–B3 1.758(6), B1–Rh1–B2 47.7(2), B2–Rh1–Rh2 75.54(11), B2–B1–B3 60.4(2), B3–B1–Rh1 108.0(3), B3–B1–Rh2 68.5(2), Rh1–B1–Rh2 84.79(13), B1–B2–B3 60.3(2), B3–B2–Rh1 104.8(2), B2–B3–Rh2 104.0(2).

Examples of monometallahexaboranes are known, e.g., 2-(CO)₃FeB₅H₉ (Chart 1).⁵⁹ But cluster **2** is the first example of a structurally characterized dimetallahexaborane analogous to B₆H₁₀ in which the apical BH and a basal BH are subrogated by Cp*RuH; i.e., in contrast to a hypothetical *nido*-1,2-{(CO)₃Fe}₂B₄H₈ dimetallahexaborane (Chart 1), **2** possesses two additional endo hydrogen atoms. Thus, all five edges of the pentagonal open face are bridged by hydrogen atoms as is the Ru–Ru apical–basal edge. Note that **2** is closely related to the organometallic "ferrole" Fe₂(CO)₆C₄H₄ and is a metallaborane analogue of Cp*Cl₂Ru($\eta^2:\eta^4-\mu_2-C_4H_4$)RuCp*.⁶⁰

The clean conversion of **1** to **2** confirms the cluster expansion step incorporated into the pathway given in Scheme 1. Although the reaction of **1** with excess $[BH_4]^-$ at 60 °C also produces some **2**, the reaction is much slower than that with BH_3 -THF and requires elevated temperatures. Slow formation of borane from the borohydride would account for the **2** observed.

Figure 4. Proposed structure of *nido*-3-Cl-1,2-(Cp*Rh)₂B₃H₆, 10.

9

11

Chart 1

Compound **1** also reacts with Co₂(CO)₈ at room temperature to give a single metallaborane in good yield. Spectroscopic data suggests addition of the components of Co(CO)₄ accompanied by the loss of hydrogen. Spectroscopic and crystallographic characterizations combined define the new compound as the 8-sep trimetallic cluster *nido*-1-(Cp*Ru)-2-(Cp*RuCO)-3-Co-(CO)₂(μ_3 -CO)B₃H₆, **3** (Figure 6). Like **2**, **3** can be considered a metal analogue of B₆H₁₀ but one in which an apical and two adjacent basal BH fragments are subrogated by metal fragments as in the hypothetical 1,2,3-{(CO)₃Fe}₃B₃H₇ (Chart 1).

⁽⁵⁹⁾ Shore, S. G.; Raganini, D.; Smith, R. L.; Cottrell, C. E.; Fehlner, T. P. *Inorg. Chem.* **1979**, *18*, 670.

⁽⁶⁰⁾ Campion, B. K.; Heyn, R. H.; Tilley, T. D. Organometallics 1990, 9, 1106.

Figure 5. Molecular structure of *nido*-1,2-(Cp*Ru)₂(μ -H)B₄H₉, **2**. Selected bond lengths (Å) and angles (deg): Ru1–Ru2 2.8527(4), Ru1–B2 2.121(5), Ru1–B3 2.122(5), Ru1–B1 2.167(5), Ru1–B4 2.169(5), Ru2–B4 2.317(5), Ru2–B1 2.321(5), B1–B2 1.831(8), B2–B3 1.784(11), B3–B4 1.805(9), B4–Ru2–Ru1 48.26(13), B1–Ru2–Ru1 48.19(13), B2–Ru1–B1 50.5(2), B3–Ru1–B1 87.4(3), B2–Ru1–B4 86.9(3), B3–Ru1–B4 49.7(2), B1–Ru1–B4 89.3(2), B4–Ru2–B1 82.2(2), B2–B1–Ru2 117.1(4), B3–B2–B1 110.1(4), B2–B3–B4 110.6(4), B3–B4–Ru2 117.8(4).

Figure 6. Molecular structure of *nido*-1-(Cp*Ru)-2-(Cp*RuCO)-3-Co(CO)₂(μ_3 -CO)B₃H₆, **3**. Selected bond lengths (Å) and angles (deg): Ru1–Ru2 2.8155(13), Ru1–Co 2.597(2), Ru2–Co 2.648(2), Ru1–B1 2.09(2), Ru1–B2 2.18(2), Ru1–B3 2.09(3), Ru1–C21 2.121(13), Ru2–B1 2.146(13), Ru2–C21 2.178(13), Ru2–C24 2.00(2), Co–B3 2.25(3), Co–C21 1.903(13), Co–C22 1.73(2), Co–C23 1.82(2), Co–C24 2.42(2), B1–B2 1.76(3), B2–B3 1.62(4), Co–Ru1–Ru2 58.41(6), B1–Ru1–B3 85.1(8), B1–Ru1–B2 48.6(7), B3–Ru1–B2 44.5(12), B1–Ru2–Co 92.9(5), B3–Co–Ru2 90.6(7), B2–B3–Co 120.0(13), B3–B2–B1 114(2), B2–B1–Ru2 116.4(12).

Curiously, **3** contains a Co(CO)₂ fragment, a CO ligand triply bridging the Ru₂Co face, and a nearly terminal CO attached to the basal Ru atom. Selective ¹H{¹¹B}NMR experiments verify the most surprising feature of its solid state structure—one basal BH fragment is left completely unbridged and the missing hydrogen ends up triply bridging a RuB₂ face. The chemical shift of this bridging hydrogen is likewise very unusual, being 3.2 ppm downfield of the B–H–B proton. In a normal *nido*borane, the endo hydrogen found bridging the Ru(1)–B(1)– B(2) face would be expected to be bridging the B(2)–B(3) edge. As there are alternative positions to place this particular hydrogen on the cluster, its observed location suggests that each one-electron Cp*Ru fragment demands an associated H atom. This consistent with the hydrogen atom locations of **1** and **2**

Figure 7. Proposed structure of *arachno*-(Cp*Ru)(CO)(µ-H)B₃H₇, 4.

above although in these cases there were no obvious alternatives for the placement of the extra hydrogens. The observed distribution of endo hydrogens on 3 can be taken to reflect the framework charge distribution perturbed by the requirements of the metal fragments.⁶¹

A ¹¹B NMR study showed that **1** does react with $Fe_2(CO)_9$ but yields only small amounts of boron-containing species. It completely decomposes to intractible material when heated to 80 °C for 20 h.

Degradation of *nido*-1,2-(Cp*Ru)₂(μ -H)₂B₃H₇, **1**. The reaction of **1** with excess Co₂(CO)₈ cleanly results in **3**; however, small amounts of a second product were observed in the ¹¹B NMR spectra. Addition of 1 equiv of Co₂(CO)₈ under more dilute conditions gave an increased yield of this other species, permitting its isolation even though **3** remained the major product. The spectroscopic data allow unambiguous identification of the new compound as *arachno*-(Cp*Ru)(CO)(μ -H)B₃H₇, **4** (Figure 7), a new "borallyl" metal complex related to the many borallyl complexes already known (Co⁵², Ir,^{62,63} Pd,^{64,65} and Pt⁶⁶⁻⁶⁸). This additional reaction pathway is that observed exclusively in the reaction of *nido*-2,4-(Cp*Co)₂B₃H₇ with Co₂-(CO)₈ to give *arachno*-(Cp*Co)(CO)₈ to reaction conditions is mechanistically significant (see below).

Dehydrogenation of *nido*-1-(Cp*Ru)-2-(Cp*RuCO)-3-Co-(CO)₂(μ_3 -CO)B₃H₆, **3**. The mild pyrolysis of **3** results in the clean conversion to a new metallaborane. The mass spectrometric data show the loss of two hydrogen atoms from **3**, and the IR spectrum confirms the retention of the triply bridging CO ligand and the Co(CO)₂ fragment of **3** as well as the presence of another bridging CO. The ¹¹B NMR indicates the existence of a plane of symmetry in the molecule, which is confirmed by the observation of a single Cp* methyl resonance in the ¹H NMR. Consistent with the molecular formula derived from the mass data, a single skeletal hydrogen is observed in the ¹H NMR with a peak width and a chemical shift consistent with association with the quadrupolar Co atom. Thus, the

(68) Haggerty, B. S.; Housecroft, C. E.; Rheingold, A. L.; Shaykh, B. A. M. J. Chem. Soc., Dalton Trans. 1991, 2175.

⁽⁶¹⁾ Fehlner, T. P. Polyhedron 1990, 9, 1955.

⁽⁶²⁾ Greenwood, N. N.; Kennedy, J. D.; Reed, D. J. Chem. Soc., Dalton Trans. 1980, 196.

⁽⁶³⁾ Bould, J.; Greenwood, N. N.; Kennedy, J. D.; McDonald, W. S. J. Chem. Soc., Dalton Trans. **1985**, 1843.

⁽⁶⁴⁾ Housecroft, C. E.; Shaykh, B. A. M.; Rheingold, A. L.; Haggerty, B. S. *Inorg. Chem.* **1991**, *30*, 125.

⁽⁶⁵⁾ Housecroft, C. E.; Owen, S. M.; Raithby, P. R.; Shaykh, B. A. M. Organometallics **1990**, *9*, 1617.

⁽⁶⁶⁾ Bould, J.; Kennedy, J. D.; Mcdonald, W. S. Inorg. Chim. Acta 1992, 196, 201.

⁽⁶⁷⁾ Guggenberger, L. J.; Kane, A. R.; Muetterties, E. L. J. Am. Chem. Soc. 1972, 94, 5665.

Figure 8. Proposed structure of *closo*-6-Co(CO)₂-2,3-(Cp*Ru)₂(μ-CO)-(μ₃-CO)B₃H₄, **5**.

compound is formulated as a 7-sep M_3B_3 octahedral cluster, closo-6-Co(CO)₂-2,3-(Cp*Ru)₂(μ -CO)(μ_3 -CO)B₃H₄, **5**, and the proposed structure is shown in Figure 8. It is a member of a small class of such compounds,^{69–72} and there is a close relationship between the proposed structure of **5** and the observed structures of compounds **7** and **12**, discussed below.

Dehydrogenation of nido-1,2-(Cp*Ru)₂(µ-H)B₄H₉, 2. Attempts to react 2 further with BH3 THF or with either Co2- $(CO)_8$ or Fe₂ $(CO)_9$ only gave unreacted 2 despite temperatures up to 80 °C and long reaction times. However, at 90 °C, a new compound was observed in the ¹¹B NMR spectra of the reaction mixture. Subsequently, it was found that this compound could be generated quantitatively by simply heating a solution of 2 at 95 °C. The spectroscopic data showed that 2 had lost two hydrogen atoms, presumably as H₂, suggesting a six-atom, 7-sep cluster product. However, these data are not easily accommodated by a closo cluster structure and a solid-state structure determination revealed the product to be pileo-2,3-(Cp*Ru)2- $(\mu$ -H)B₄H₇, **6**, with a BH-capped *nido*-2,3-(Cp*Ru)₂B₃H₇ structure (Figure 9). As such, it is the dimetal analogue of pileo-1,2,3-(Cp*Ru)₃(μ -H)B₃H₇ formed as a minor byproduct in the synthesis of 1.73

The square pyramidal framework of **6** is similar to that observed for **9**, but **6** possesses an added BH fragment which caps the M₂B face. Again, each Cp*Ru fragment is associated with a hydrogen atom; however, there is nothing unusual about the placement of these atoms on the cluster framework. This is the second example of a capped dimetallapentaborane to be reported. The first is *pileo*-2,3-{(PMe₃)₂HFe}₂B₄H₈ isolated in 1% yield from the reaction of Fe(PMe₃)₃(η^2 -CH₂PMe₂)H with B₅H₉.⁷⁴ The synthetic advantage using monoboranes to build a metallaborane on a dimetal species in this case corresponds to a factor of 76 in yield even though the route involves three separate steps.

Metal Fragment Addition to *pileo-2*,**3**-(**Cp*Ru**)₂(*µ*-**H**)**B**₄**H**₇, **6.** Heating **6** in the solid state under vacuum to higher temperatures only resulted in sublimation of **6** accompanied by some decomposition to intractible material. Likewise, treatment

(73) Lei, X.; Shang, M.; Fehlner, T. P. *Inorg. Chem.* **1998**, *37*, 3900.
(74) Grebenik, P. D.; Green, M. L. H.; Kelland, M. A.; Leach, J. B.; Mountford, P. J. Chem. Soc., Chem. Commun. **1990**, 1234.

Figure 9. Molecular structure of *pileo*-2,3-(Cp*Ru)₂(μ -H)B₄H₇, **6**. Selected bond lengths (Å) and angles (deg): Ru1–Ru2 2.8550(7), Ru1–B4 2.038(5), Ru1–B2 2.210(5), Ru1–B1 2.235(5), Ru2–B4, 2.047(5), Ru2–B3 2.226(5), Ru2–B1 2.243(5), B1–B3 1.717(7), B1–B2 1.719(8) B1–B4 1.740(7), B2–B3 1.834(8), B4–Ru1–B2 93.2(2), B2–Ru1–Ru2 76.76(14), B4–Ru2–B3 92.7(2), B4–Ru2–B1 47.6(2), B3–Ru2–Ru1 76.63(14), B3–B1–B2 64.5(3), B3–B1–B4 127.0(4), B2–B1–B4 126.4(4), B3–B1–Ru1 106.8(3), Ru1–B1–Ru2 79.2(2), B1–B2–B3 57.7(3), B3–B2–Ru1 103.7(3), B2–B3–Ru2 102.9(3), B1–B4–Ru1 72.0(2), B1–B4–Ru2 72.1(2), Ru1–B4–Ru2 88.7(2).

Figure 10. Molecular structure of *pileo*-6-Fe(CO)₃-2,3-(Cp*Ru)₂(μ_3 -CO)B₄H₄, **7**. Selected bond lengths (Å) and angles (deg): Ru1–Ru2 2.6816(5), Ru1–Fe 2.7178(9), Ru2–Fe 2.709(1), Ru1–C(21) 2.045(4), Ru1–B4 2.068(5), Ru1–B2 2.161(5), Ru1–B1 2.220(5), Ru2–C(21) 2.047(4), Ru2–B4 2.066(5), Ru2–B3 2.162(5), Ru2–B1 2.232(5), Fe–C22 1.750(6), Fe–C23 1.765(6), Fe–C24 1.810(7), Fe–B3 2.083(6), Fe–B2 2.086(6), Fe–C(21) 2.492(4), B1–B2 1.712(9), B1–B3 1.715(9), B1–B4 1.773(8), B2–B3 1.772(8), C21–Ru1–B4 85.7(2), C21–Ru1–B2 107.0(2), B4–Ru1–B2 94.6(2), B2–Ru1–Ru277.90(14), C21–Ru1–Fe 61.16(13), B4–Ru1–Fe 106.40(14), C(21)–Ru2-B4 85.7(2), C(21)–Ru2–B3 107.0(2), B4–Ru2–B3 94.4(2), B2–B1–B4 126.2(4), B3–B1–Ru1 101.7(3), B2–B1–Ru2 101.5(3), B1–B2–B3 59.0(3), B1–B2–Fe 105.0(3), B3–B2–Ru1 102.1(3), B1–B3–Fe 105.0(3), B2–B3–Ru2 102.2(3), Ru2–B4–Ru1 80.9(2).

with BH₃·THF up to 100 °C gave no reaction. However, **6** reacts cleanly with Fe₂(CO)₉ to give a single metallaborane in good yield. The spectroscopic data showed the addition of the elements of Fe(CO)₄ and the loss of four hydrogen atoms, suggesting a seven-vertex, 7-sep cluster product. The capped closo cluster structure suggested by the NMR data was confirmed by a solid-state structure determination as *pileo*-6-Fe(CO)₃-2,3-(Cp*Ru)₂(μ_3 -CO)B₄H₄, **7** (Figure 10). The Fe(CO)₃ fragment formally replaces two endo hydrogens, and the CO ligand triply bridging the trimetal face replaces the other two. The capping BH fragment retains its position on the Ru₂B face as found in **6**. Presumably, the incoming metal fragment interacts with the square face of **6**, leaving the remainder of the cluster intact. The existing example of a capped trimetal octahedral

⁽⁶⁹⁾ Zimmerman, G. J.; Hall, L. W.; Sneddon, L. G. Inorg. Chem. 1980, 19, 3642.

⁽⁷⁰⁾ Miller, V. R.; Weiss, R.; Grimes, R. N. J. Am. Chem. Soc. 1977, 99, 5646.

⁽⁷¹⁾ Pipal, J. R.; Grimes, R. N. Inorg. Chem. 1977, 16, 3255.

⁽⁷²⁾ Weiss, R.; Bowser, J. R.; Grimes, R. N. Inorg. Chem. **1978**, *17*, 1522.

Figure 11. Molecular structure of closo-1-Cl-6-{Co(CO)₂}-2,3-(Cp*Rh)₂(μ_3 -CO)B₃H₃, 12. Selected bond lengths (Å) and angles (deg): Rh1-Co 2.5450(12), Rh2-Co 2.5465(11), Rh1-Rh2 2.7070(8), Rh1-B1 2.114(10), Rh1-B2 2.170(10), Rh2-B1 2.125(9), Rh2-B3 2.152(9), Co-B2 2.240(11), Co-B3 2.225(12), B1-Cl 1.805(11), B1-B2 1.70(2), B1-B3 1.71(2), B2-B3 1.77(2), Co-Rh1-Rh2 57.91(3), B1-Rh2-B3 47.2(4), B1-Rh2-Rh1 50.1(3), Co-Rh2-Rh1 57.85(3), B1-B2-B3 59.2(6), B2-B1-B3 62.4(7), B2-B1-Rh1 68.4(5), B3-B1-Rh1 106.3(6), Rh1-B1-Rh2 79.4(3), B1-B2-Co 95.7(6).

metallaborane, *pileo*-1,2,3-(Cp*Co)₃B₄H₄,^{75,76} displays a BH cap on the triangular Co₃ face. Compound **6** also reacts with Co₂-(CO)₈ but gives more than two compounds in low yields on the basis of ¹¹B NMR spectroscopy.

Metal Fragment Addition to *nido*-1-Cl-2,3-(Cp*Rh)₂B₃H₆, 11. Reaction of 11 with Co₂(CO)₈ at room temperature results in the formation of a single metallaborane product isolated in good yield. Spectroscopic characterization in solution and a solid-state structure determination define the cluster product as 7-sep *closo*-1-Cl-6-{Co(CO)₂}-2,3-(Cp*Rh)₂(μ_3 -CO)B₃H₃, 12 (Figure 11). As noted already, there are examples of homometallic M₃B₃ octahedral cluster structures known,^{69–72} but **5** and 12 are the first examples derived from directed syntheses.

In contrast to metal fragment additions to 1 and 6, 11 also reacts cleanly with Fe₂(CO)₉ to give a single metallaborane product. Although a solid-state structure was not obtained, the spectroscopic data show it to be a close analogue of 12, namely, 7-sep *closo*-1-Cl-6-{Fe(CO)₃}-2,3-(Cp*Rh)₂(μ_3 -CO)B₃H₂, 13. The exact mass establishes the molecular formula, the ¹H and ¹¹B NMR spectra reveal a plane of symmetry, and the IR data suggest the presence of an Fe(CO)₃ fragment plus a μ_3 -CO ligand. Thus, we propose the structure shown in Figure 12, in which the iron fragment has simply added to the square base of 11 in the same manner as the cobalt fragment. This structure also contains a triangular metal fragment to support the triply bridging carbonyl ligand. The difference between 12 and 13 is the presence of a CoH moiety in the former vs Fe(CO) in the latter.

Discussion

Formation of M–B Bonds. Pathways for the formation of the M_2B_3 clusters of Ru and Rh are given in Schemes 1 and 2. They conforms in general to past experience with Co,¹⁸ Cr,¹⁹ and Mo;²⁰ however each metal exhibits unique aspects associated with the competition among formal reduction of the monocyclopentadienylmetal chloride, formation of M–B and B–B bonds, and cluster expansion by borane. That is, reaction of the monocyclopentadienylmetal chloride with borohydride yields a metal borohydride (Cr) or a metal dimer with a formal $[B_2H_6]^{2-}$ ligand bridging the metal–metal bond (Co, Mo). Here,

Figure 12. Proposed structure of *closo*-1-Cl-6-{Fe(CO)₃}-2,3-(Cp*Rh)₂- (μ₃-CO)B₃H₂, **13**.

Scheme 4

Rh behaves like Co whereas Ru yields a M_2B_3 product directly from the mixed-valent dimer. Reaction with borane and elimination of BH₂Cl lead directly to a M_2B_3 cluster (Co) or a M_2B_5 cluster (Mo) although considerable manipulation of the reaction system to yield other products is possible for the latter metal. [Cp*CrCl]₂ is an exception in that the formation of a M_2B_4 cluster is accompanied by the formation of [Cp*CrCl₂]₂ rather than BH₂Cl. With borane, both Rh and Ru generate BH₂Cl and form M_2B_3 clusters. For Rh, chlorine removal as BH₂Cl is less efficient and the major M_2B_3 product contains a chlorine atom. For Ru, the M_2B_3 to M_2B_4 expansion reaction is competitive with M_2B_3 formation.

Cluster Expansion. Generally, dimeric monocyclopentadienylmetal chlorides give dimetallaboranes as the principal product, but the number of borane fragments in the cluster depends on the metal and the monoborane used. E.g., for M_2B_n : Co, n = 3;¹⁸ Cr, n = 4;¹⁹ Mo, n = 5.²⁰ A stepwise buildup of M_2B_n from a $M_2B_2H_6$ intermediate is very appealing. In the present work, we have established examples of cluster expansion for M_2B_2 to M_2B_3 and M_2B_3 to M_2B_4 . As we have previously reported the M_2B_4 to M_2B_5 step for M = Cr,⁵³ prototypes for a stepwise assembly of all the dimetallaboranes observed now exist (Scheme 4, where the metals on each arrow refer to the metals for which examples of the cluster expansion reaction exist). In a synthesis with a given metal, the product observed depends on the relative barrier heights of the steps as well as the reaction conditions.

Cluster Reactivities. Although the structural properties of the new clusters produced in this work are interesting, all obey the electron-counting rules. More importantly, the work defines a set stoichiometric reactions interconnecting stable compounds of defined structures. At this elementary level, this work, along with one earlier study,⁵² establishes for the first time important aspects of the reactivity of the three isomeric forms of a dimetallapentaborane.

⁽⁷⁵⁾ Venable, T. L.; Grimes, R. N. Inorg. Chem. 1982, 21, 887.
(76) Venable, T. L.; Sinn, E.; Grimes, R. N. Inorg. Chem. 1982, 21, 904.

We chose to use BH₃·THF, Fe₂(CO)₉, and Co₂(CO)₈ as test reagents. Although each reagent has unique features, all are commonly used in cage- and cluster-building reactions.^{7,77} In addition, thermolysis at modest temperatures (80–100 °C) was investigated. In the following, only reactions which give a single metallaborane product in good yield are considered significant for the purpose of this discussion. The observations are summarized in Scheme 5, where positive reactions are indicated by the reagents listed on the reaction arrow. Included in Scheme 5 are the previously published results on the reactions of *nido*-2,4-(Cp*Co)₂B₃H₇, **14**, with Fe₂(CO)₉ to give *nido*-1-(Cp*Co)-2-{Fe(CO)₃B₃H₇, **16** (Scheme 5d).⁵²

Ruthenaborane **1** displays the most varied chemistry. It undergoes facile cluster expansion reactions with borane (Scheme 5a1) and with $Co_2(CO)_8$ (Scheme 5b1) to yield analogous nido six-atom clusters. Both compounds lose hydrogen on heating, with the former yielding a capped square pyramidal cluster (**6**, Scheme 5a2) and the latter a closo cluster (**5**, Scheme 5b2). As the sep of both clusters is the same, the difference in final structure is attributed to the differing numbers of endo hydrogens in the two compounds.⁷³ The open square face left because the capping option is adopted by **6** permits the addition of an iron fragment to give **7** (Scheme 5a3).

The observation of two distinct steps to reach the condensed clusters 5 and 6 demonstrates kinetic control of the fragment addition reactions. A more forceful demonstration of kinetic

control comes from an examination of the reaction of 1 with differing amounts and concentrations of the reagent $Co_2(CO)_8$. Low levels of $Co_2(CO)_8$ give the cluster degradation product analogous to 16 (Scheme 5e) whereas high levels give metal fragment addition to give 3. As $Co_2(CO)_8$ is well-known to generate Co(CO)₄ radicals⁷⁸ which participate in cluster reactions,⁷⁹ a simple explanation of the observations can be offered. Addition of a $Co(CO)_4$ radical to 1 would give a { $(Cp*Ru)_2$ - $(\mu-H)_2B_3H_7Co(CO)_4$ radical cluster intermediate. In the presence of relatively high concentrations of Co(CO)₄ radicals, bimolecular H atom abstraction to give HCo(CO)₄ and molecular- $\{(Cp*Ru)_2(\mu-H)_2B_3H_6Co(CO)_4\}$ dominates and loss of H₂ generates 3 as the major product. With low concentrations of Co(CO)₄ radicals, unimolecular decomposition of the radical intermediate to 4 plus coproducts $[Cp*Ru(CO)_2]_2$, $[Co(CO)_3]_4$, and H₂ (first two coproducts were spectroscopically observed) becomes competitive with the bimolecular process that forms 3.

In contrast to 1, 11 undergoes the addition of either Co or Fe fragments to give the closo cluster 12 or 13 in one step (Scheme 5d). It is tempting to suggest that a nido intermediate analogous to 3 is involved, but this would imply that the barrier to hydrogen elimination is considerably reduced in the change from RuH to Rh. More appealing is the addition of the metal fragment to give a distinct intermediate which reacts by two competitive

⁽⁷⁷⁾ The Chemistry of Metal Cluster Complexes; Shriver, D. F., Kaesz, H. D., Adams, R. D., Eds.; VCH: New York, 1990.

⁽⁷⁸⁾ Absi-Halabi, M.; Atwood, J. D.; Forbus, N. P.; Brown, T. L. J. Am. Chem. Soc. **1980**, 102, 6248.

⁽⁷⁹⁾ Horwitz, C. P.; Holt, E. M.; Shriver, D. F. Organometallics 1985, 4, 1117.

Chemistry of Dimetallaboranes

pathways: insertion to give the nido cluster product vs elimination of hydrogen to give the closo product. If correct, the different reactivities of the three isomer types relative to the metal-based test reagents may be associated with the metal atom positions in the square pyramidal cluster. Conceptually, addition of the incoming metal fragment to an edge of the square face of **1**, **11**, or **14** leads to different metal arrangements. Why could this lead to different products?

In all cases when the metals are adjacent, the incoming metal fragment generates a metal triangle capped with a triply bridging CO ligand in the product (Scheme 5a3,b1,d). This structural feature is retained in the thermal conversion of 3 to 5 (Scheme 5b2), suggesting it provides some cluster stability. In the case of 1 and 14, but not 11, the generation of this feature would require cluster rearrangement. This additional contribution to the reaction barrier leading to a closo product permits other paths to compete effectively, e.g., Scheme 5b1. As suggested previously,⁵² addition of the incoming metal moiety to a metal in the square face is a reasonable way to account for the fact that $1-(Cp*Co)-2-{Fe(CO)_3}B_3H_7$, 15, is observed rather than $1-{Fe (CO)_3$ -2- $(Cp*Co)B_3H_7$ as the product of the reaction of 14 with $Fe_2(CO)_9$. These observations suggest a connection between the nature and position of the metal moieties in the dimetallaborane and the products observed.

Summary

A rational, useful synthetic route to *nido*-M₂B₃ clusters of Ru and Rh has been developed based on the reactions of monoboranes with monocyclopentadienylmetal chlorides. Relative to Cp*Rh in a dimetallaborane cluster, the Cp*Ru fragment compensates by incorporating an additional endo hydrogen into the cluster structure. In terms of geometry and hydrogen atom placement, the appropriate comparison is Cp*Rh with Cp*RuH. Directly or indirectly, the added endo hydrogen leads to a richer reaction chemistry for Ru vs Rh based on reactions with selected main group and transition metal fragments. The reactions observed suggest that fragment addition and hydrogen loss determine the product found. Metal positions in the *nido*-M₂B₃ cluster appear to be important in determining the cluster products observed under the mild conditions used. The reactions observed are consistent with known metal cluster chemistry,^{4,77} but the fact that rather subtle factors such as cluster geometry, metal position, number of endo hydrogens, or reagent concentrations can determine product type for a dimetallaborane shows that only the barest outline of the reaction chemistry of multimetal metallaborares has been revealed thus far.

Note Added in Proof: After revision of this manuscript we learned that compounds 1 and 2 have been synthesized and characterized by others using a similar approach.⁸⁰

Acknowledgment. Generous support of the National Science Foundation is gratefully acknowledged. We thank Mr. D. Schifferl for aid with the NMR experiments.

Supporting Information Available: X-ray crystallographic files, in CIF format, and tables giving information on data collection and reduction and structure solution and refinement, crystallographic parameters, atomic coordinates and equivalent isotropic temperature factors, bond distances, bond angles, and anisotropic temperature factors for 1-3, 6, 7, 9. This material is available free of charge via the Internet at http://pubs.acs.org. The crystal data and related metrics for 11 and 12 have been deposited elsewhere.³⁶

JA982954J

⁽⁸⁰⁾ Kawano, Y.; Shimoi, M., personal communication.